Role of astroglial Kir4.1 channels in the pathogenesis and treatment of epilepsy
نویسندگان
چکیده
The inwardly rectifying potassium (Kir) channel subunit Kir4.1 is specifically expressed in brain astrocytes and Kir4.1-containing channels (Kir4.1 channels) mediate astroglial spatial potassium (K + ) buffering. Recent advances in Kir4.1 research revealed that Kir4.1 channels can serve as a novel therapeutic target for epilepsy. Specifically, reduced expression or dysfunction of Kir4.1 channels seems to be involved in generation of generalized tonic-clonic seizures (GTCS) in animal models of epilepsy and patients with temporal lobe epilepsy. In addition, recent clinical studies showed that loss-of-function mutations of human gene (KCNJ10) encoding Kir4.1 elicit “EAST” or “SeSAME” syndrome which manifests as GTCS and ataxia. Although the precise mechanisms remain to be clarified, it is suggested that dysfunction of Kir4.1 channels disrupts spatial K +
منابع مشابه
The Neuroglial Potassium Cycle during Neurotransmission: Role of Kir4.1 Channels
Neuronal excitability relies on inward sodium and outward potassium fluxes during action potentials. To prevent neuronal hyperexcitability, potassium ions have to be taken up quickly. However, the dynamics of the activity-dependent potassium fluxes and the molecular pathways underlying extracellular potassium homeostasis remain elusive. To decipher the specific and acute contribution of astrogl...
متن کاملExpressional analysis of the astrocytic Kir4.1 channel in a pilocarpine–induced temporal lobe epilepsy model
The inwardly rectifying potassium (Kir) channel Kir4.1 in brain astrocytes mediates spatial K(+) buffering and regulates neural activities. Recent studies have shown that loss-of-function mutations in the human gene KCNJ10 encoding Kir4.1 cause epileptic seizures, suggesting a close relationship between the Kir4.1 channel function and epileptogenesis. Here, we performed expressional analysis of...
متن کاملInhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors.
The inwardly rectifying K+ (Kir) channel Kir4.1 is responsible for astroglial K+ buffering. We recently found that tricyclic antidepressants (TCAs) inhibit Kir4.1 channel currents, which suggests that astroglial Kir currents might be involved in the pharmacological action of antidepressants. We therefore further examined the effects of the currently most popular antidepressants, selective serot...
متن کاملInhibition of astroglial inwardly rectifying Kir4.1 channels by a tricyclic antidepressant, nortriptyline.
The inwardly rectifying K(+) (Kir) channel Kir4.1 is responsible for astroglial K(+) buffering. We examined the effects of nortriptyline, a tricyclic antidepressant (TCA), on Kir4.1 channel currents heterologously expressed in HEK293T cells, using a whole-cell patch-clamp technique. Nortriptyline (3-300 microM) reversibly inhibited Kir4.1 currents in a concentration-dependent manner, whereas it...
متن کاملPathogenesis of Epilepsy: Challenges in Animal Models
Epilepsy is one of the most common chronic disorders affecting individuals of all ages. A greater understanding of pathogenesis in epilepsy will likely provide the basis fundamental for development of new antiepileptic therapies that aim to prevent the epileptogenesis process or modify the progression of epilepsy in addition to treatment of epilepsy symptomatically. Therefore, severa...
متن کامل